8,746 research outputs found

    Lattice-Boltzmann Model of Amphiphilic Systems

    Full text link
    A lattice-Boltzmann model for the study of the dynamics of oil-water-surfactant mixtures is constructed. The model, which is based on a Ginzburg-Landau theory of amphiphilic systems with a single, scalar order parameter, is then used to calculate the spectrum of undulation modes of an oil-water interface and the spontaneous emulsification of oil and water after a quench from two-phase coexistence into the lamellar phase. A comparison with some analytical results shows that the model provides an accurate description of the static and dynamic behavior of amphiphilic systems.Comment: 6 pages, 2 figures, europhysics-letter styl

    Resummed Green-Kubo relations for a fluctuating fluid-particle model

    Full text link
    A recently introduced stochastic model for fluid flow can be made Galilean invariant by introducing a random shift of the computational grid before collisions. This grid shifting procedure accelerates momentum transfer between cells and leads to a collisional contribution to transport coefficients. By resumming the Green-Kubo relations derived in a previous paper, it is shown that this collisional contribution to the transport coefficients can be determined exactly. The resummed Green-Kubo relations also show that there are no mixed kinetic-collisional contributions to the transport coefficients. The leading correlation corrections to the transport coefficients are discussed, and explicit expressions for the transport coefficients are presented and compared with simulation data.Comment: 4 pages including 4 figures, submitted to PRE Rapid Com

    Electronic structure and Fermi surface tolopogy of Nax_xCoO2_2

    Full text link
    We construct an effective Hamiltonian for the motion of T2g highly correlated states in NaxCoO2. We solve exactly a multiband model in a CoO6 cluster with electronic occupation corresponding to a nominal Co valence of either +3 or +4. Using the ensuing ground states, we calculate the effective O mediated hopping t=0.10 eV between many-body T2g states, and estimate the direct hopping t'~0.04 eV. The trigonal splitting 3D=0.315 eV is taken from recent quantum chemistry calculations. The resulting effective Hamiltonian is solved using a generalized slave-boson mean-field approximation. The results show a significant band renormalization and a Fermi surface topology that agrees with experiment, in contrast to predictions using the local-density approximation.Comment: 4 pages, 2 figure

    Comparison of weighted-density-functional theories for inhomogeneous liquids

    Get PDF
    This is the publisher's version, also available electronically from http://journals.aps.org/pra/abstract/10.1103/PhysRevA.42.4806.Three recent weighted-density-functional (WDF) theories are critically examined in terms of their ability to describe correctly the structure of a hard-sphere fluid at a hard wall. A new derivation of the Curtin-Ashcroft WDF theory is given that clarifies the basic approximations behind this formulation and brings out the close relationship between their work and the WDF theories of Meister-Kroll and Groot–van der Eerden. The condition that the second functional derivative of the approximate Helmholtz free-energy functional yields the correct two-particle direct-correlation function in the homogeneous limit is found to be of crucial importance in determining good liquid structures

    Freezing of soft spheres: A critical test for weighted-density-functional theories

    Get PDF
    This is the publisher's version, also available electronically from http://journals.aps.org/pra/abstract/10.1103/PhysRevA.42.4810We study the freezing properties of systems with inverse-power and Yukawa interactions (soft spheres), using recently developed weighted-density-functional theories. We find that the modified weighted-density-functional approximation (MWDA) of Denton and Ashcroft yields results for the liquid to face-centered-cubic (fcc) structure transition that represent a significant improvement over those of earlier ‘‘second-order’’ density-functional freezing theories; however, this theory, like the earlier ones, fails to predict any liquid to body-centered-cubic (bcc) transition, even under conditions where the computer simulations indicate that this should be the equilibrium solid structure. In addition, we show that both the modified effective-liquid approximation (MELA) of Baus [J. Phys. Condens. Matter 2, 2111 (1990)] and the generalized effective-liquid approximation of Lutsko and Baus [Phys. Rev. Lett. 64, 761 (1990)], while giving excellent results for the freezing of hard spheres, fail completely to predict freezing into either fcc or bcc solid phases for soft inverse-power potentials. We also give an alternate derivation of the MWDA that makes clearer its connection to earlier theories

    Swelling of particle-encapsulating random manifolds

    Full text link
    We study the statistical mechanics of a closed random manifold of fixed area and fluctuating volume, encapsulating a fixed number of noninteracting particles. Scaling analysis yields a unified description of such swollen manifolds, according to which the mean volume gradually increases with particle number, following a single scaling law. This is markedly different from the swelling under fixed pressure difference, where certain models exhibit criticality. We thereby indicate when the swelling due to encapsulated particles is thermodynamically inequivalent to that caused by fixed pressure. The general predictions are supported by Monte Carlo simulations of two particle-encapsulating model systems -- a two-dimensional self-avoiding ring and a three-dimensional self-avoiding fluid vesicle. In the former the particle-induced swelling is thermodynamically equivalent to the pressure-induced one whereas in the latter it is not.Comment: 8 pages, 6 figure
    • …
    corecore